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Purpose. To group microcrystalline celluloses (MCCs) using a com-
bination of artificial neural network (ANN) and data clustering.
Methods. Radial basis function (RBF) network was used to model the
torque measurements of the various MCCs. Output from the RBF
network was used to group the MCCs using a data clustering tech-
nique known as discrete incremental clustering (DIC). Rheological or
torque profiles of various MCCs at different combinations of mixing
time and water:MCC ratios were obtained using mixer torque rhe-
ometry (MTR). Correlation analysis was performed on the derived
torque parameter Torquemax and physical properties of the MCCs.
Results. Depending on the leniency of the predefined threshold pa-
rameters, the 11 MCCs can be assigned into 2 or 3 groups. Grouping
results were also able to identify bulk and tapped densities as major
factors governing water-MCC interaction. MCCs differed in their
water retentive capacities whereby the denser Avicel PH 301 and PH
302 were more sensitive to the added water.
Conclusions. An objective grouping of MCCs can be achieved with a
combination of ANN and DIC. This aids in the preliminary assess-
ment of new or unknown MCCs. Key properties that control the
performance of MCCs in their interactions with water can be discov-
ered.

KEY WORDS: artificial neural network; discrete incremental clus-
tering; microcrystalline cellulose; mixer torque rheometry; preformu-
lation.

INTRODUCTION

Artificial neural network (ANN) is a learning/training
system based on a computational technique that can simulate
the neurologic processing ability of the human brain (1).
ANNs collate knowledge by recognizing patterns and rela-
tionships in data and learn through experience or continual
training. A comprehensive introduction about ANNs has
been reported (2). The ANN learns an approximate nonlinear
relationship through a training process. During the training
process, the interunit connections are optimized until the er-
ror in predictions is minimized and a certain level of accuracy
is attained. Once the network is trained, it can be fed with
new input information to predict the output. Although ANN
methodology is a relatively new field, it has found wide ap-
plications in pharmaceutical research, ranging from interpre-
tation of analytical data (data modeling), drug design (mo-

lecular modeling), dosage form design (optimization), and
pharmacokinetic/dynamic modeling among others (1,3–6).

Analyzing sequences of data is also known as time series
data analysis. It aims to find mathematical representations
(i.e., finding the inner hidden mappings among data) for mod-
eling data and to forecast future values of the time series
variable. Both of these goals require the identification and
description of the pattern of observed time series data. Once
the pattern is established, it can be interpreted and integrated
with other data. Regardless of the depth of understanding and
validity of the interpretation (theory) about a given data set,
extrapolation can be made to identified patterns for predict-
ing future events and comparing between different patterns.
Due to their powerful ability to unravel hidden mappings
among data, neural networks can successfully be used in
many time series data applications, such as speech synthesis,
video surveillance, and finance forecasting. Rheological mea-
surements of microcrystalline celluloses (MCCs) are also
forms of time series data and may be analyzed as such.

Neural networks provide linear algorithms capable of
representing complex nonlinear mapping, and they can ap-
proximate any regular input sequence (7). Their learning abil-
ity from training data makes them an important tool for time
series analysis. On the other hand, there are different topolo-
gies of neural networks that may be used for time series mod-
eling. Among them, radial basis function (RBF) networks
have shown considerably better scaling properties, especially
when the number of hidden neurons is increased (8). Whereas
ANN is useful in modeling and understanding complicated
relationships within a given data set, it is inadequate in situ-
ations where there is a requisite to achieve some form of
objective clustering.

The information derived from ANN alone would not be
sufficient to gain an in-depth knowledge of the relationship
between different MCCs. To better understand water-MCC
interaction, an additional step of data clustering needs to be
carried out. Data clustering involves the division of a given
data set into smaller groups or clusters, each possessing cer-
tain similar characteristics. By clustering, hidden patterns or
relationships may be uncovered and is immensely useful in
many information retrieval areas including Web mining,
medical diagnostics, and marketing analysis.

A novel clustering technique known as discrete incre-
mental clustering (DIC) is also introduced. DIC can deter-
mine the optimal number of clusters for a given data set (9)
without the need to predefine the number of clusters. This is
a distinct advantage as the total number of clusters for a given
data set is usually unknown.

Intergrade variability of MCC has been well docu-
mented, and much of this was attributed to differences in the
source and composition of plant material as well as processing
conditions used in its manufacture (10–13). This variability is
subsequently reflected as differences in fundamental physical
properties of MCCs. These resultant inconsistencies can com-
promise the control of process parameters during drug prod-
uct manufacture. The importance of preformulation studies
cannot be overemphasized.

The mechanisms by which MCC functions as a spheroni-
zation aid of almost unparalleled efficiency have yet to be
fully understood, although the key physical properties on the
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quality of the pellets formed had been identified (14). At-
tempts to produce pellets by extrusion-spheronization with
very little or no MCC were not encouraging (15). It has thus
been generally accepted that MCC is essential for well-
controlled pellet production. Other spheronization aids stud-
ied (powdered celluloses, low-substituted hydroxypropylcel-
luloses and pectinic acid) were not of comparable efficiency
as MCC in use, compatibility, and quality of pellets formed
(16–18).

Inherent variabilities in starting materials may be com-
pensated if better understanding of processing parameters is
available. The effects of process parameters, types of ex-
truder, and water content can affect the properties of the
pellets formed (19–23).

Mixer torque rheometry (MTR) is a reliable and direct
method for assessing mixing resistance of moistened powder
masses in granulation studies (24–25). Torque measurements
are related to the rheological character or consistency of wet
powder masses, which determine whether the mass contain-
ing MCC can successfully be spheronized. This is because the
performance and functionality of MCC during spheronization
is highly dependent on its interaction with water and would be
reflected in the consistency of the wet powder mass contain-
ing MCC. An optimum range of water:MCC ratios exists for
MCC to be effective as a spheronization aid. Outside this
range, good quality spheroids cannot be produced. Depend-
ing on the grade of MCC used, the range can vary.

The rheological requirements of water:MCC mixes and
differences between the MCCs have been reported (26) but
were not explored further. There had also been several re-
ported studies relating moisture content and MCC properties
in spheronisation (27–29). As torque is related to moisture
content and physicochemical properties of MCC, it is impera-
tive that torque measurements will reflect the summative re-
actions between MCC and moisture; thus, the function and
performance of MCC.

This current work will focus on another aspect of water-
MCC interaction by powder rheology and seeks to establish a
relationship between the rheological profiles and their physi-
cal properties using ANN and DIC. In this study, RBF will be
applied to model the torque measurements of MCCs. Subse-
quent to this, DIC will be used to group the MCCs based on
the output derived from the RBF network. MCCs with closely
related physical properties tend to generate torque profiles
that bear close resemblance to each other. Hence, a system-
atic way of grouping MCCs can be achieved.

MATERIALS AND METHODS

Materials

Eleven MCCs were characterized: Avicel PH 101, Avicel
PH 102, Avicel PH 301, Avicel PH 302, Ceolus KG 801
(Asahi, Osaka, Japan); Celex 101 (ISP, Wayne, NJ, USA);
Emcocel 50 M, Prosolv 50 M (Mendell, Patterson, NJ, USA);
Viva Pur 101 (J. Rettenmaier & Sohne, Holzmulle, Ger-
many); and Pharmacel 101 and Pharmacel 102 (DMV, Veg-
hel, The Netherlands). Prosolv 50 M is a silified grade of
MCC and is physically equivalent to Emcocel 50 M. All
MCCs were of the same batch as those quoted previously
(14). Distilled water was used as the binding liquid.

Physical Characterization of MCCs

Particle size (X), bulk (�b), and tapped (�t) densities, %
crystallinity (Xcr), micromeritic parameters (Vlow P, Vhigh P,
Vtotal, and �), and extrusion-spheronization parameters (Ws

and W710 µm) were previously determined for all MCCs and
reproduced in Table I (14).

Vlow P and Vhigh P refer to the amount of mercury in-
truded into the pores at different levels of pressure, and Vtotal

is the sum of Vlow P and Vhigh P. � denotes the percent poros-
ity. Ws refers to the spheronization water sensitivity of MCC,
and it is a measure of the tolerance of the MCC to the added
moisture. W710 µm refers to the predicted water requirements
for producing pellets with a mean size of 710 �m.

Data Modeling Using Artificial Neural Network

An RBF classifier is a three-layer neural network model
in which an N-dimensional input vector x � (x1,x2,...,xN) is
broadcasted to each of K neurons in the hidden layer. Each
hidden neuron produces an activation function, typically a
Gaussian kernel:

hi = exp�−
�x � ci �2

2�i
2 �, i = 1, 2, . . . , K (1)

where ci and �i
2 are the center and width of the Gaussian basis

function of the ith hidden unit, respectively. The units in the
output layer have interconnections with all the hidden units.
The jth output neuron has the form:

fj�x� = w jh = �
i=1

K

wij exp�−
�x − ci �2

2�i
2 � (2)

where h � (h1,h2,...,hk) is the input vector from the hidden
layer, and wij is the interconnection weight between the jth
output neuron and the ith hidden neuron. The architecture of
RBF network is shown in Fig. 1.

Training of the ANN was conducted on the torque data
measured at different mixing times and water:MCC ratios for
the 11 MCCs. An RBF network with 20 hidden neurons was
used to model the MCCs where the input vectors were mixing
time and water:MCC ratio, and the output vector was torque
measurement. Sampling data of a specific MCC was used in
training the RBF network where weights of the network were
updated iteratively by error back propagation algorithm. Af-
ter the network was trained for a specific MCC, sampling data
of other MCCs were entered to test the mean square errors
(MSEs). The results from RBF models were used to calculate
the membership function values of DIC clusters.

Data Clustering

In DIC, a cluster grows by the expansion of its kernel,
which is controlled by the plasticity parameter, �. The � value
governs the extent to which each cluster expands its kernel in
order to include a new data point that has been introduced.
The � value of a cluster decreases as the cluster expands its
kernel. The change of � in a cluster is modeled by the first
quadrant of a cosine waveform. Figure 2 shows the decrease
of � from an initial value of 0.5.

The tendency parameter (Fig. 3), TD, is analogous to a
cluster’s willingness to grow. It maintains the relevance of a
cluster and prevents it from incorporating too many data
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points that has low fitness (membership function value) to the
cluster. TD is calculated according to the following equation:

TDi,j
new = TDi,j

old + �A − TDi,j
old� × �1 −�i,j �xi��

2 (3)

where �i,j denotes the membership function of the node i, j,
and A � −0.5. When TD is less than or equal to zero, the
cluster stops expanding and causes � to become zero.

The input threshold, IT, refers to the minimum member-
ship value to decide if an input vector can be assigned to any
existing clusters. When the vectors are entered, the first vec-
tor will be considered as the cluster center. With this cluster,
a new input vector’s membership function value is calculated.
If it is below the input threshold, the new data will be assigned
into the existing cluster. The winner cluster then grows a little
according to the predefined � value. In addition, TD is cal-
culated to represent the cluster’s willingness to “grow.” If the
new data match the cluster exactly, the cluster keeps its “will-
ingness” to grow. Otherwise, it ceases to grow further. If the
membership function value is larger than IT, the new input
vector becomes a new cluster. The basis parameter set is de-
fined as: � � 0.5, IT � 0.9; the membership function values
are based on the results of RBF networks.
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Fig. 1. Architecture of the RBF network.

Fig. 2. Modeling of plasticity parameter, �.
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MTR Measurements

Degree of Liquid Saturation

Fifteen grams of MCC powder were added into the mixer
bowl of the MTR (Caleva Process Solutions Limited, Dorset,
England) and mixed for 30 s. The mean torque generated by
the dry powder was recorded. Distilled water, corresponding
to added water addition of 15% w/w was added to the dry
powder at intervals of 30 s for the first 10 additions and at
intervals of 60 s for the remaining 9 additions. The entire
mixing process was completed in 20 min, and the mean
torques generated for 19 additions were recorded. The test
was performed in triplicates for each MCC.

Rheological Profiles

Unlike the previous test, water was added only as a bolus
dose after the torque generated for the dry powder was re-
corded. The amounts used ranged from 75% to 220% w/w of
MCC powder. All the water was evenly distributed through-
out the dry powder while the blades turned. The total mixing
time was 46 min for all the MCCs, and respective torque
values were logged at regular intervals. Water addition
amounting to 200% w/w was too wet to produce any appre-
ciable torque reading for Avicel PH 301 and PH 302; hence,
moisture contents equal to and greater than 200% w/w were

not investigated for these 2 MCCs. Triplicates were per-
formed for each MCC at all the mixing times and water ad-
ditions tested.

Statistical Analysis

Correlation analysis was performed using Pearson’s cor-
relation analysis (SPSS 12.0 for Windows, SPSS Inc., Chicago,
IL, USA). Contour plots were done using SigmaPlot 8.0 (Sig-
maPlot for Windows, Systat Software, Inc., Richmond, VA,
USA).

RESULTS

Data Modeling and Clustering

MSE values obtained from the RBF network (Table II)
were subsequently used in the calculation of membership
function values required by the DIC method for grouping the
MCCs. Two levels of stringency were defined for the DIC
parameters, � and IT. They are listed as Levels One and Two
in Table III with the latter level having a more lenient crite-
rion for the IT value.

MTR Measurements

Degree of Liquid Saturation Achieved

Variation of measured torques over a range of water
additions was investigated, with the results presented in Fig.
4. The measured torques of all MCC increased as the water
content increased, rising to a maximum (Torquemax) and de-
creased thereafter when a slurry was produced. This obser-
vation was consistent with the different states of liquid satu-
ration (30–31).

Table IV shows the water:MCC ratios required to
achieve capillary state of liquid saturation for all the MCCs.
These water:MCC ratios corresponded to the Torquemax for
the respective MCCs. The high-density MCCs, Avicel PH 301
and PH 302, exhibited significantly lower water requirements
for achieving capillary saturation (ANOVA, p < 0.05). The
other nine MCCs were similar in their water requirements at
saturation (ANOVA, p > 0.05).

Effect of Water:MCC Ratio on Magnitude of Torquemax

It is observed in Fig. 4 that the high-density MCCs, Avi-
cel PH 301 and PH 302, generated distinctly higher torque
values for the same increase in water:MCC ratio (ANOVA,

Table II. Calculated MSE by Modeling the Torque Measurements of MCCs Using RBF

Testing MCC

Training MCC

Avicel
PH 101

Avicel
PH 102

Avicel
PH 301

Avicel
PH 302

Ceolus
KG 801

Celex
101

Emcocel
50 M

Prosolv
50 M

Viva
Pur 101

Pharmacel
101

Pharmacel
102

Avicel PH 101 0 0.123 0.676 0.646 0.126 0.102 0.060 0.076 0.196 0.192 0.190
Avicel PH 102 0.123 0 0.574 0.502 0.019 0.046 0.044 0.047 0.039 0.037 0.035
Avicel PH 301 0.919 0.815 0 0.143 0.874 0.965 0.752 0.802 0.739 0.778 0.834
Avicel PH 302 0.887 0.716 0.145 0 0.751 0.874 0.707 0.765 0.629 0.657 0.694
Ceolus KG 801 0.129 0.016 0.614 0.525 0 0.030 0.052 0.064 0.050 0.043 0.032
Celex 101 0.095 0.047 0.709 0.633 0.033 0 0.080 0.089 0.101 0.080 0.065
Emcocel 50 M 0.060 0.045 0.535 0.500 0.054 0.082 0 0.024 0.089 0.087 0.098
Prosolv 50 M 0.074 0.047 0.555 0.525 0.064 0.086 0.024 0 0.077 0.080 0.090
Viva Pur 101 0.196 0.038 0.512 0.433 0.048 0.094 0.089 0.077 0 0.011 0.016
Pharmacel 101 0.187 0.031 0.542 0.452 0.044 0.078 0.083 0.084 0.014 0 0.012
Pharmacel 102 0.182 0.029 0.579 0.478 0.035 0.063 0.094 0.097 0.021 0.014 0

MSE, mean square error; MCC, microcrystalline cellulose; RBF, radial basis function.

Fig. 3. Dynamics of tendency parameter, TD.
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p < 0.05). Statistical analysis also indicated that the non-Avicel
MCCs generally exhibited the same rheological profiles when
the water additions were varied (ANOVA, p > 0.05). Ceolus
KG 801, Celex 101, Emcocel 50 M, Prosolv 50 M, and Pharma-
cel 102 were most comparable to Avicel PH 101 and PH 102 in
terms of their rheological profiles (ANOVA, p > 0.05).

Particle size did not appear to have an effect on the
magnitude of Torquemax values, although the large particle
size grade of Pharmacel 102 generated a slightly higher torque
value than its small particle size counterpart, Pharmacel 101.
Torquemax values between the three pairs of MCCs (Avicel
PH 101 and PH 102; PH 301 and PH 302; Pharmacel 101 and
Pharmacel 102) mentioned in the previous paper (32) were
not found to be different. Interestingly, these findings did not
coincide with those of Rowe and Sadeghnejad (26) who con-
cluded that reduction in the particle size resulted in lower
water requirements for attaining Torquemax. The Torquemax

obtained was also of a lower magnitude as compared to that
produced by a larger particle size grade of MCC. Silification
did not have an effect on the Torquemax generated.

Effect of Mixing Time and Water:MCC Ratio on
Rheological Profiles

Rheological profiles of the MCCs across the entire range
of water additions are presented in Fig. 5. At low water:MCC
ratios (0.75 and 0.9 ml/g), only Avicel PH 301 and PH 302

generated appreciable torques, because they have lower wa-
ter tolerance. The comparatively low amounts of water added
were sufficient to saturate the interstitial spaces between
these MCC particles, leaving some to form liquid films ad-
hering to the particles thus attaining capillary stage of satu-
ration. Between these two MCCs, the larger particle size
grade, PH 302, generated a smaller Torquemax value than the
small particle size counterpart, Avicel PH 301, even though
their water requirements at saturation were similar.

At saturation (water:MCC ratio of 1 ml/g), Avicel PH 301
generated a higher torque value than PH 302. This observation
corresponded to the findings presented in Fig. 4. Further addi-
tion of water (1.25 ml/g and beyond) resulted in slurries or over-
wetted masses that had much reduced torque values. At inter-
mediate water:MCC ratios (1 to 1.3 ml/g), differences between
the remaining 9 MCCs only began to manifest, especially at
saturation water:MCC ratios in the region of 1.25 to 1.5 ml/g.

Ceolus KG 801, a low-density, high-porosity MCC grade,
exhibited moderate to high torque values at intermediate to
high water:MCC ratios (1.25 to 1.75 ml/g). This was attributed
to the larger interstitial spaces available for water to reside;
therefore, more water was needed to fill the spaces.

Emcocel 50 M and Prosolv 50 M displayed equivalent rhe-
ological profiles with moisture regardless of mixing time. Visual
examination of the contour plots (Fig. 5) revealed the close
resemblance of Ceolus KG 801, Celex 101, and Viva Pur 101 to

Table IV. Saturation Water:MCC Ratio and Torquemax for
Various MCCs

MCC

MTR measurementsa

Saturation
water:MCC ratio Torquemax

Avicel PH 101 1.35 (0) 1.129 (0.006)
Avicel PH 102 1.35 (0.150) 0.938 (0.045)
Avicel PH 301 0.95 (0.087) 2.017 (0.027)
Avicel PH 302 0.95 (0.087) 1.847 (0.1)
Ceolus KG 801 1.50 (0) 0.973 (0.109)
Celex 101 1.40 (0.087) 0.999 (0.047)
Emcocel 50 M 1.40 (0.087) 0.934 (0.053)
Prosolv 50 M 1.45 (0.087) 0.928 (0.014)
Viva Pur 101 1.30 (0.087) 0.824 (0.089)
Pharmacel 101 1.40 (0.087) 0.846 (0.055)
Pharmacel 102 1.30 (0.087) 0.912 (0.044)

MCC, microcrystalline cellulose.
a Standard deviations are provided in parentheses.

Fig. 4. Variation of measured torque with water: MCC ratio for (�)
Avicel PH 101, (�) Avicel PH 102, (�) Avicel PH 301, (✖) Avicel PH
302, (✴) Ceolus KG 801, (✹) Celex 101, (+) Emcocel 50 M, (�)
Prosolv 50 M, (�) Viva Pur 101, (�) Pharmacel 101, and (�) Phar-
macel 102.

Table III. Grouping of MCCs

Group

Level one Level two

� � 0.5 IT � 0.9 � � 0.5 IT � 0.8

1 Celex 101, Ceolus KG 801 Celex 101, Ceolus KG 801, Avicel PH 102
2 Emcocel 50 M, Prosolv 50 M Emcocel 50 M, Prosolv 50 M
3 Pharmacel 101, Pharmacel 102, Viva Pur 101 Pharmacel 101, Pharmacel 102, Viva Pur 101

— Avicel PH 101 Avicel PH 101
— Avicel PH 102 Avicel PH 301
— Avicel PH 301 Avicel PH 302
— Avicel PH 302 —

MCC, microcrystalline cellulose.
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Fig. 5. Effect of water:MCC ratios and mixing times on the torque profiles of (A) Avicel PH 101, (B) Avicel PH 102,
(C) Avicel PH 301, (D) Avicel PH 302, (E) Ceolus KG 801, (F) Celex 101, (G) Emcocel 50M, (H) Prosolv 50M, (I)
Viva Pur 101, (J) Pharmacel 101, and (K) Pharmacel 102. Torque values in [Nm] Newton Meters.
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Fig. 5. Continued.
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Avicel PH 102 across the entire range of water concentrations
tested.

Correlation Analysis

Crystallinity, bulk and tapped densities, and Ws were
positively correlated with Torquemax (Pearson’s correlation
coefficient: r � 0.652, p � 0.03; r � 0.811, p � 0.002; r �
0.798, p � 0.003; r � 0.838, p � 0.001) at the 0.05 level
(2-tailed). The Vlow P, Vtotal, and W710 µm showed negative
correlations (Pearson’s correlation coefficient: r � −0.615,
p � 0.044; r � −0.608, p � 0.047; r � −0.944, p � 0.000).
This was not surprising as higher shear forces were needed to
drive the mixer blades through wetted masses. Consequently,
the torques generated at saturation for Avicel PH 301 and PH
302 were almost double those of the other MCCs.

DISCUSSION

On their own, the MSE values have limited usefulness.
They merely serve as indicators of the relative degree of simi-
larity between any random pair of MCCs. Moreover, these
results only allow one-to-one comparisons between any two
randomly selected MCCs. The numerical values obtained are
arbitrary and should not be compared across the board to
yield any meaningful conclusions. A MSE value of zero indi-
cates the lack of difference. The smaller the MSE value, the
more similar are the pair of MCCs compared.

Clustering results can be explained in terms of the physi-
cal properties of the MCCs. Although Celex 101 and Ceolus
KG 801 were in the same group (Level One, Group 1), close
examination of their measured physical properties revealed
little similarity between them. This meant that each property
affects the degree of water-MCC interaction differently, al-
beit in varying extents. For the members of this group, their
differences were somewhat balanced out, thus resulting in
them having similar rheological behaviors when moistened.
This discussion also holds true for the MCCs in Group 2
(Level One), as Emcocel 50 M and Prosolv 50 M also differed
in several physical aspects. Silification was not found to affect
granulation and densification of the wet granulates signifi-
cantly, although Prosolv 50 M had higher compressibilities
(higher bulk and tapped density) due to better flow properties
imparted by the silicon dioxide. More importantly, it meant
that the intrinsic ability of MCC to absorb and redistribute
water was not affected by the presence of flow-enhancing
agents such as silicon dioxide.

Under the first stringency level, the four Avicel MCC
grades were present as single entities, and even under a re-
duced level of stringency (Level Two), three of them re-
mained as distinct entities and were ungrouped. This meant
that their rheological profiles were dissimilar to the other
MCCs used in this current study. Nonetheless, these results
indicated the effects of the physical properties of MCCs on
their interaction with water. The major differences between
Avicel PH 101 and PH 102 was in their particle size and bulk
and tapped densities. These disparities were sufficient to
separate them. Similarly, Avicel PH 301 and PH 302 differed
in their particle size, crystallinity, and bulk and tapped den-
sities. The two high-density MCCs, Avicel PH 301 and PH
302, showed different rheological properties but were similar
in their lower capacities to accommodate the added water in

their interstitial spaces and thus were more readily saturated.
Better packing (as indicated by higher bulk and tapped den-
sities) and lower pore volumes (indicated by micromeritic
parameters) compromised the interstitial spaces available for
the added water to reside and were believed to be responsible
for their reduced water tolerance. This also implied that Avi-
cel PH 301 and PH 302 had higher water sensitivities and
were less able to accommodate changes in water content dur-
ing granulation. With more MCCs introduced, it may be pos-
sible that they are similar to those single MCC entities in this
study to form a new group. As such, this model could be used
to classify the rheological properties of any newly introduced
MCC.

For ascertaining the influence of particle size, Viva Pur
101, Pharmacel 101, and Pharmacel 102 were examined. De-
spite being obtained from different suppliers, Viva Pur 101
and Pharmacel 102 had strikingly similar physical properties:
their only distinction being particle size. On the contrary, the
two Pharmacel grades were markedly different in several as-
pects (Table I). As such, the influence of particle size would
be more aptly demonstrated by comparing Viva Pur 101 and
Pharmacel 102 instead. Yet, regardless of the stringency of
DIC parameters applied, all the three MCCs were in the same
group.

When the stringency of the DIC parameters was reduced
to Level Two, Avicel PH 102 was assigned into Group 1.
Close examination of the physical properties of Celex 101 and
Avicel PH 102 showed that these two MCCs rank very simi-
larly in the Vlow P, � and kawakita constant (1/b) values. These
parameters refer to the pore volumes and the cohesiveness of
the MCC particles. Thus, these parameters were considerably
more important in water uptake and distribution. Movement
of the added water was also influenced by the densification of
granulates during mixing. This finding suggests that Avicel
PH 102 and Celex 101 were similar. Further reduction in the
stringency of the DIC parameters (IT < 0.8), resulted in the 11
MCCs being divided into 2 groups: the high-density Avicel
PH 301 and PH 302 in one group and the remaining 9 MCCs
in another group. Having considered all the above observa-
tions, bulk and tapped densities were believed to exert major
influences on the rheological behaviors of the MCCs, cor-
roborating with the results obtained by correlation studies.

CONCLUSIONS

The multiplicity of physicochemical properties of MCCs
affects their functionality as spheronization aids and compli-
cates grouping attempts of MCCs based solely on any indi-
vidual physicochemical property. The combination of ANN
and DIC offers the opportunity for clustering MCCs into dis-
crete groups that possess equivalent or comparable perfor-
mance; thus, providing a basis for suggesting interchangeabil-
ity among MCCs within the same group. This is especially
advantageous for formulation scientists during the preformu-
lation and optimization phases of product development. Ad-
ditionally, the findings from this study demonstrated the
strong influences of bulk and tapped densities in governing
water-MCC interactions. Evidently, this phenomenon in-
volves an interplay of many factors, each contributing to vary-
ing extents.

The acquired knowledge can further be extended to ex-
plore the relationship between the quality of formed sphe-
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roids and the rheological profiles of MCCs. Thereafter, ex-
trapolation of the clustering results will be able to predict the
performance of these MCCs in spheroid production. This will
not only improve process optimization and quality control
but, more significantly, opens up opportunities for the devel-
opment of newer MCCs with superior qualities and allows the
potential of any newly introduced MCC to be assessed as an
alternative to the existing grades.
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